Storage Technologies for Renewable Energy

Joseph H. Simmons and Ardeth M. Barnhart Co-Directors AzRISE – The Arizona Research Institute for Solar Energy University of Arizona http://www.azrise.org

AzRISE - The Arizona Research Institute for Solar Energy formed at the University of Arizona in September 2007 Funded by ABOR, University of Phoenix, TEP, APS, DOE and SFAz

New PV materials

- Nanostructures for high efficiency and large area multijunction solar cells
- Polymer and hybrid materials for low cost solar cells
- Porous Si solar cells and temperature-tolerant solar cells

• Storage

- Short term and low cost (Batteries and supercapacitors)
- Long term with high efficiency (CAES and pumped hydroelectric)
- Integrated generation and storage systems
- Smart Grid and Control Systems, Solar Desalination, Measurements, Testing
 - Smart Home systems in Solar Decathlon House
 - Solar irradiance, effects of clouds and temperature, TEP Test Yard Data

• Economics and Policy analyses

- Economic assessments of integrated storage systems
- Policy analysis of incentives, tariffs, regulations and renewable energy standards
- Economic and policy drivers and comparative technical and economic assessments
- Education and Workforce Training and Outreach

Overview

- Useful Storage Technologies
 - Batteries
 - Compressed Air Energy Storage
 - Thermal Energy Storage
 - Pumped Hydroelectric
- Opportunities in Arizona
 Geology
- Macro-economics of Solar/Renewable Energy (to be presented at the next session by Ardeth M. Barnhart)

The University of Arizona In alliance with University of Phoenix Photovoltaic Modules at the TEP SOLAR TEST YARD

A Field Laboratory to study

Cost Reliability Efficiency Storage Transmission

23 Inverters

Poly Si

Thin Si.

CIGS

Alex Cronin UA Physics

Short-term intermittency due to weather

The University of Arizona In alliance with University of Phoenix

Day-to-day Production Variation

Load Mismatch with Single Axis Tracking PV

Seasonal Mismatch Between Demand and Production

In alliance with University of Phoenix

Energy Storage – A Critical Component in the Development of a Solar America

- Energy storage is critical:
 - Supply side: Intermittent renewable energy sources Solar and Wind
 - Demand side: Large variations in demand (peak-load shaving)
 - Short term weather intermittency
 - Day-to-day variations
 - Load mismatch
 - Seasonal Mismatch
- Energy storage must be:
 - Inexpensive, Efficient, Rapid reaction to loss of power
 - Available in sufficient capacity
 - Seasonal arbitrage, load shifting, regulation
 - National Energy Reserve

Superconducting magnetic energy

Storage Technologies and Regimes of Application

A. Nourai

Sam Jaffe – ESA 09 (Energy Insights) Summary of Energy Storage approaches:

Storage Technologies Primarily for Energy (kWh) Applications

Technology	\$/kWh	Rater Power (MW)	Efficiency	Lifetime	Discharge Time (hours)
Pumped Hydro	250 - 260	20-2,400	78 – 83%	11,000+	10
CAES	550 – 650	110 – 290	50 – 75%	11,000+	10
Flow batteries	500 - 1,000	0.05 – 8	65 - 80%	500+	8
NaS batteries	2,500 – 3,750	0.05 – 50	70 – 80%	3,000+	7
NiCad batteries	6 1 0 – 1 ,700	0.01 – 27	60 - 65%	1,000+	4

Storage Technologies Primarily for Power (kW) Applications

Technology	\$/kW	Rater Power (MW)	Efficiency	Lifetime	Max Discharge Time (minutes)
NaS batteries	3,000 - 4,000	0.05 – 50	70 - 80%	3,000+	300
Li-Ion batteries	1,000 - 4,500	0.005 – 1	90 – 95%	20,000+	15
NiCad batteries	1,560 – 3,780	0.01 – 27	60 – 65%	1,000+	15
Lead acid	1,050 – 1,890	0.01 – 10	70 – 75%	250+	15
Flywheels	2,500 - 4,000	0.5 – 1	90 - 95%	500,000+	15
Super capacitors	N/A	0.003 – 0.01	90 – 98%	500,000+	seconds

Solar Application: Wakkanai Project

1.5MW NAS Battery for 5 MW Solar

Financed by NEDO (New Energy and Industrial Technology Development Organization)

Case study: frequency regulation A123Systems Li-Ion: AES Corporation

- 2-MW, 500-kWh unit assembled in trailer
- Operational and performing frequency regulation for AES-owned Huntington Beach, CA natural gas plant
- Air cooled, but plans for liquidcooled version
- Plans to install several other units at AES facilities worldwide
- Lithium phosphate-based technology also being aimed at EV market

Caption: A123's Hybrid Ancillary Power Unit (H-APU) being placed in service

Source: A123Systems

Case study: frequency regulation Altairnano Li-Ion: PJM Interconnection

- 1-MW, 250-kWh system housed in 40-ft trailer
- Utilizes fast charge/discharge capability of lithium titanate oxide technology to dispatch frequency regulation services on PJM
- One unit currently in operation at PJM headquarters; Trial previously completed at IP&L
- Batteries feature extended lifetime of 25,000+ cycles, but come at a higher cost than other Li-lon chemistries
- Courting new opportunities in frequency regulation and renewables integration

Caption: Interior view of the Altairnano battery management system

Source: Altair Nanotechnologies

Energy Storage – A Critical Component in the Development of a Solar America

Compressed Air Energy Storage (CAES)

- Above ground (vessels) Storage for a few hours Automotive applications
- Underground Compressed Air Storage (1,100 psi, 75 atmo.)
 - Needs salt deposits (primary)
 - □ High efficiency and low price (65-90%)
 - Needs additional fuel for operating the turbine (natural gas or biofuels)

- Adiabatic pump with heat recovery using molten salt storage
- Hydrogen heating for additional fuel
- Salt deposits and alluvium for underground storage
- Mining sites and mine tailing banks
- Demonstration site (Riverpoint Solar Research Park)

Schematic for AEC CAES Plant ESPC: Developed and optimized the CAES Concept and Parameters

•G&H/Herbert: EPC Contractors DR: Supplied Compressors &Expanders SW: Advanced Recuperator; AIT: HP/IP Combustors , PB: Underground Storage

Energy Storage – A Critical Component in the Development of a Solar America

Underground Compressed Air Storage

- Salt reservoir solution mined
- Aquifer reservoir: displace water in porous rock, needs rock permeability and a suitable capping system (hardest to accomplish) but is similar to natural gas reservoirs
- Hard rock mine: problem with fractures; Colorado rock is heavily fractured; high pressure tests are expensive
- Huntdorf, Ge (1978) 290 MW, 2-3hr reservoir (salt)
- *McIntosh, Ala* (1991) 110 MW, 26 hr = 19M ft3 reservoir (salt)
- Norton, OH (2010) 2,700 MW, (abandoned limestone mine)
- Iowa Stored Energy Park (future) 270 MW, 16 hr (aquifer)
- Briscoe, TX (future) 1,000 MW (salt) + 3,000 MW wind = 2,000 MW continuous. 3,000 MW wind requires 120,000 acres. Shell + Luminant/TXU

Riverpoint Solar Research Park (1 MW) demonstration, Phoenix, AZ

Other Technologies

- Liquid Air
- Thermal systems
- Pumped hydroelectric
- Flywheels
- Supercapacitors
- Other batteries:
 - Deep discharge, graphite enhanced lead acid batteries
 - □ Vanadium redox flow batteries

The Isentropic Heat Pump

 The Isentropic heat pump converts electrical energy in super-heated and super-cooled argon to store in gravel. To recover the electricity, the process is simply reversed using the same equipment.

Recoverable Electrical Energy 30 MWh

Comparison of Energy Storage Technologies

Method	Cycles, Lifetime	Typical Efficiency	\$/KW- Capacity	\$/KWh Energy			
Niagara PS	75 + yrs	70%	~1500 - 2500	11.50-19.25			
Pumped Hydro (typical)	50 + yrs	75-82%	850 - 2300	85-300			
Compressed Air (CAES)	~30-50 yrs	73-89%	~200	~20			
Sodium-sulfur batteries	-	89-92%	t.b.d.	-			
Lead-acid batteries	1.2-1.8 kilo-cycles <10 yr	85-90%	100	2,000			
Lithium-ion	1500 +	90-98%	900 - 1300	>10,000			
Electrochemical Supercapacitor	500,000 + / ~12 yrs	85-98%	100	20,000			
Flywheel	10 ⁵ -10 ⁷ Cycles ~20 yr	85-90%	1500	6,000			
CAES is a mixed technology that requires burning gas as part of the cycle, so							

not a pure storage method; CAES improves yield of gas turbines.

CAES Characteristics

- Typical range of operating pressures: 1150 psi 750 psi
- Energy output per cavern size: 7.3 kWh/m³
- Energy balance: 1 kWh CAES production comes from:
 Compression energy: 0.75 kWh
 Heating energy: 4,300 BTU (1.25 kWh/0.39 kWh NG)
- Typical round-trip efficiency: 65%
- Potential round-trip efficiency with heat recovery: 85%
- Storage vessels:
 - Underground salt cavern, abandoned mine
 - Depleted natural gas well, capped aquifer storage
 - Alluvium holes
 - Above-ground steel vessels

Compressed Air Energy Storage

- Generation/storage systems integration
- Efficiency w/o heat recovery: 65%, with: 85%
- Isothermal vs adiabatic pumping
- Turbine vs vessel size
- Costs and economics

- Air Storage:
- Subsurface imaging to greater than 2,000 feet
- Solution mined salt, drilled alluvium
- Depleted natural gas wells, abandoned mines
- Above-ground tanks, underwater tanks

Compressed Air Energy Storage

Electric transmission grid

- Generation/storage systems integration
- Efficiency w/o heat recovery: 65%, with: 85%
- Isothermal vs adiabatic pumping
- Turbine vs vessel size
- Costs and economics

- Air Storage:
- Subsurface imaging to greater than 2,000 feet
- Solution mined salt, drilled alluvium
- Depleted natural gas wells, abandoned mines
- Above-ground tanks, underwater tanks

Load Shifting Function

Energy Demand and Generation (Grid, PV, Storage)

Load Shifting Function – CAES Capacity

Addition of CAES to Meet Seasonal Differences

Underground Compressed Air Storage in Salt Caverns

- Holbrook salt basin covers 3,500 square miles and is 300 feet thick.
- Holbrook basin has the capacity to store 30TW of electrical production – more that the US total energy demand (3.3 TW) or 30 times the electrical demand (1 TW).

- Many salt basins are distributed throughout Arizona
- Luke, Picacho and Holbrook are currently used to store natural gas or propane
 AZRISF

Arizona Research Institute for Solar Energy