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AzRISE  - The Arizona Research Institute for Solar Energy
formed at the University of Arizona in September 2007

Funded by ABOR, University of Phoenix, TEP, APS, DOE and SFAz

● New PV materials
 Nanostructures for high efficiency and large area multijunction solar cells

 Polymer and hybrid materials for low cost solar cells

 Porous Si solar cells and temperature-tolerant solar cells

● Storage
 Short term and low cost (Batteries and supercapacitors)

 Long term with high efficiency (CAES and pumped hydroelectric)

 Integrated generation and storage systems

● Smart Grid and Control Systems, Solar Desalination, Measurements, Testing
 Smart Home systems in Solar Decathlon House

 Solar irradiance, effects of clouds and temperature, TEP Test Yard Data

● Economics and Policy analyses
 Economic assessments of integrated storage systems

 Policy analysis of incentives, tariffs, regulations and renewable energy standards

 Economic and policy drivers and comparative technical and economic assessments

● Education and Workforce Training and Outreach 
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Overview

● Useful Storage Technologies

Batteries

Compressed Air Energy Storage

Thermal Energy Storage

Pumped Hydroelectric

● Opportunities in Arizona

Geology

● Macro-economics of Solar/Renewable Energy (to be 
presented at the next session by Ardeth M. Barnhart)
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Photovoltaic Modules at the
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Rated Power

2,640 Watts peak

Short-term intermittency due to weather
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Day-to-day Production Variation
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Load Mismatch with Single Axis Tracking PV
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Seasonal Mismatch Between Demand and Production
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Energy Storage – A Critical Component
in the Development of a Solar America

● Energy storage is critical:
 Supply side: Intermittent renewable energy sources – Solar and Wind

 Demand side: Large variations in demand (peak-load shaving)

 Short term weather intermittency

 Day-to-day variations

 Load mismatch

 Seasonal Mismatch

● Energy storage must be:
 Inexpensive, Efficient, Rapid reaction to loss of power

 Available in sufficient capacity

 Seasonal arbitrage, load shifting, regulation 

 National Energy Reserve



 Energy Storage 

Batteries

Supercapacitors

Flywheels

Hydrogen

Fuel cells

Compressed air in vessels

Underground compressed air

Pumped hydroelectric

Thermal storage

Superconducting magnetic energy



Full power duration of storage technologies

Duration Biomass Hydrogen CAES Thermal Hydroelec Flow cell batteries Supercap

4 mos + + +
3 weeks + + +
3 days + + + + +
6 hours + + + + + + +
2 hours + + + + + + +
40 min + + + + + +
10 min + + + + +
20 sec + + +
1 second +



Sam Jaffe – ESA 09 (Energy Insights)

Summary of Energy Storage approaches:









Energy Storage – A Critical Component
in the Development of a Solar America

● Compressed Air Energy Storage (CAES)

 Above ground (vessels) 
Storage for a few hours
Automotive applications

● Underground Compressed Air Storage 
(1,100 psi, 75 atmo.)

 Needs salt deposits (primary)

 High efficiency and low price (65-90%)

 Needs additional fuel for operating the 
turbine (natural gas or biofuels)

 UA research –

►Adiabatic pump with heat recovery using molten salt storage

►Hydrogen heating for additional fuel

►Salt deposits and alluvium for underground storage

►Mining sites and mine tailing banks

►Demonstration site (Riverpoint Solar Research Park)





Energy Storage – A Critical Component
in the Development of a Solar America

● Underground Compressed Air Storage

 Salt reservoir – solution mined

 Aquifer reservoir: displace water in porous rock, needs rock permeability 
and a suitable capping system (hardest to accomplish) but is similar to 
natural gas reservoirs

 Hard rock mine: problem with fractures; Colorado rock is heavily fractured; 
high pressure tests are expensive

 Huntdorf, Ge (1978) 290 MW, 2-3hr reservoir (salt)

McIntosh, Ala (1991) 110 MW, 26 hr = 19M ft3 reservoir (salt)

 Norton, OH (2010) 2,700 MW, (abandoned limestone mine)

 Iowa Stored Energy Park (future) 270 MW, 16 hr (aquifer)

 Briscoe, TX (future) 1,000 MW (salt) + 3,000 MW wind = 2,000 MW 
continuous. 3,000 MW wind requires 120,000 acres.
Shell + Luminant/TXU

 Riverpoint Solar Research Park (1 MW) demonstration, Phoenix, AZ



Other  Technologies

● Liquid Air

● Thermal systems

● Pumped  hydroelectric

● Flywheels

● Supercapacitors

● Other batteries:

Deep discharge, graphite enhanced lead acid 

batteries

Vanadium redox flow batteries







CAES Characteristics

● Typical range of operating pressures: 1150 psi – 750 psi

● Energy output per cavern size: 7.3 kWh/m3

● Energy balance: 1 kWh CAES production comes from:

 Compression energy: 0.75 kWh

 Heating energy: 4,300 BTU (1.25 kWh/0.39 kWh NG)

● Typical round-trip efficiency: 65%

● Potential round-trip efficiency with heat recovery: 85%

● Storage vessels:

 Underground salt cavern, abandoned mine

 Depleted natural gas well, capped aquifer storage

 Alluvium holes

 Above-ground steel vessels



Compressed Air Energy Storage

● Generation/storage systems integration

● Efficiency w/o heat recovery: 65%, with: 85%

● Isothermal vs adiabatic pumping

● Turbine vs vessel size

● Costs and economics 

● Air Storage:

● Subsurface imaging to greater than 2,000 feet

● Solution mined salt, drilled alluvium

● Depleted natural gas wells, abandoned mines

● Above-ground tanks, underwater tanks
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above ground vessel
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Compressed Air Energy Storage

● Generation/storage systems integration

● Efficiency w/o heat recovery: 65%, with: 85%

● Isothermal vs adiabatic pumping

● Turbine vs vessel size

● Costs and economics 
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● Air Storage:

● Subsurface imaging to greater than 2,000 feet

● Solution mined salt, drilled alluvium

● Depleted natural gas wells, abandoned mines

● Above-ground tanks, underwater tanks



Load Shifting Function 



Load Shifting Function – CAES Capacity
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Addition of CAES to Meet Seasonal Differences 
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Underground Compressed Air Storage in Salt Caverns

● Holbrook salt basin covers 3,500 
square miles and is 300 feet thick.

● Holbrook basin has the capacity to 
store 30TW of electrical production –
more that the US total energy demand 
(3.3 TW) or 30 times the electrical 
demand (1 TW).

● Many salt basins are distributed 
throughout Arizona

● Luke, Picacho and Holbrook are 
currently used to store natural gas or 
propane


