EXHIBIT J-9
Renee,
EPNG/Kinder Morgan votes for Route A or Route B. Route C parallels the SFPP petroleum products pipelines (3 of them) for the entire stretch along Ajo, so that route would involve studying and mitigating any negative impacts of the new powerline on those pipelines and/or their cathodic protection systems.

Thanks for letting us vote!
Kelley
Kelley Sims, SR/WA
Land Department, Tucson Area
5151 E. Broadway, Suite 1680
Tucson, AZ 85711
(520) 663-4223

Hello,

Tucson Electric Power (TEP) is encouraging stakeholders to help identify the preferred route for the proposed Irvington to Kino 138 kV transmission line to connect the Irvington Substation located at East Irvington Road and South Contractor’s Way to the planned Kino Substation at South Kino Parkway and East 36th Street. TEP has completed its alternatives analysis and selected 3 alternative routes. Attached is the final project newsletter that includes the 3 alternative maps. Please review this information and let us know:

1. Any issues that are important to you in evaluating the transmission line alternatives.
2. Whether there is an alternative you prefer and why.

TEP will use additional input received by March 28, 2018 to select a preferred route from these alternatives. TEP will include all three alternatives and all input received from public meetings, in writing, and through online comment tools, in its application to the Arizona Corporation Commission for a Certificate of Environmental Compatibility, which we expect to file in April 2018.

Additional information is available at TEP’s website at: https://www.tep.com/irvington-to-kino/
Please let me know if you have any questions or need additional information. Thank you,

Renee Darling
Senior Environmental & Land Use Planner
Tucson Electric Power Company
Land Resources – RC131
3950 E. Irvington Road
Tucson, AZ. 85714-2114
520-884-3642 Fax 520-545-1436
rdarling@tep.com
EXHIBIT J-10
South Park Neighborhood Association Meeting

IRVINGTON TO KINO 138-KILOVOLT (KV) TRANSMISSION LINE AND KINO SUBSTATION PROJECTS

JANUARY 8, 2018
Thanks for Having Us!
How Electricity Gets to You

1. **Power Plant** – where electricity is generated utilizing resources such as natural gas, the sun, wind or coal

2. **Extra High Voltage (EHV) Transmission System** – system of wires connecting power plant generators to bulk switchyards

3. **Bulk Switchyards** – connect EHV transmission lines to High Voltage (HV) transmission lines

4. **High Voltage Transmission System** – system of wires connecting bulk switchyards to distribution substations

5. **Substations** – reduce or “step down” transmission line voltage and connect high voltage transmission lines to lower voltage distribution lines

6. **13.8-kV Distribution Lines** – where power is safely distributed overhead or underground

7. **Customer** – safe, reliable power delivered to your door
“Why does TEP have to build a substation in this area?”

- Growing demand for power in the area
- Cannot serve with existing system because:
 - Large amount of 4-kV
 - Insufficient 14-kV ties
 - Low circuit ratings (4-kV)
 - High feeder loading percentages
 - Construction difficulties around I-10
 - 46-kV circuit capacity
- Need first identified in 2007
- Adjusted with growth estimates – current projection 2021: 13% increase from today
Benefits

“How does our neighborhood benefit from these projects?”

• Supports development
• Reinforces the transmission & distribution systems
• Improves reliability at several TEP substations in the area
• Allows TEP to retire at least two lower-capacity substations in the area, in the future
• Supports Pima County’s plans to build a park
Area Load Study Results

“How is future demand determined?”

- Complete an area load forecast annually
- Study Area is 4 square miles (the area that will benefit most directly)
- Present peak demand is 29 megavolt amperes (MVA)
- Future projected demand is 50 MVA
- Load center at southeast corner of 36th Street and Kino Parkway
Area Load Study Results

“Why not use existing substations?”

• Need for 4-kV distribution conversion in area makes it difficult to justify upgrade

• 21st Street substation (two transformers)
 • At capacity: 195% load increase since installation of new transformer in 2011

• Pueblo Gardens substation (one transformer)
 • Only 2 MVA available

• Fair Street Substation
 • 8 MVA available, however extending feeder ties over the freeway is an expensive capital project that would bring only marginal improvement

• 36th Street Substation
 • 4-kV substation, not 13.8-kV: would have to be rebuilt
Benefits of a 138-kV Substation

“Why does TEP want to build a 138-kV substation?”

- Long-term solution for future load growth (150 MVA)
- Improves overall reliability by transitioning to a looped system (when Phase 2 is complete)
- Potential to retire at least two (2) 46-kV substations in next 5 years
Kino Substation Siting

“Why does TEP want to build it there?”

• Closest to the load center
• Great access
• Size accommodates

“Wasn’t TEP’s Preferred site at the Bridges Originally”

• Initially thought that Pima County parcel wasn’t an option
• Determined that it was actually not the best option because:
 • TEP requires 2 access points
 • Planned development would lock the substation in on two sides and decrease safety and provide limited feeder exits from the substation.
 • U of A bio park development area would be reduced at least 25%.

“What’s wrong with these other sites?”

• Not enough room
• Too far from the load center = significant increase in cost and loss of reliability
• Access bad
• Not compatible with existing or planned land use
Kino Substation

“What will the substation look like?”
EXISTING CONDITIONS

PHOTO POINT 1
From the northwest corner of Kino Pkwy and 36th St looking southeast
PROPOSED CONDITIONS

NEW 100’ TRANSMISSION LINE POLE (SEE NOTES)

NEW 100’ DROP STRUCTURE
NEW 60’ STATIC MAST (TYP)

NEW 10’ SCREEN WALL

PROPOSED PARK AND SUBSTATION MONUMENTATION

PHOTO POINT 1
From the northwest corner of Kino Pkwy and 36th St looking southeast
PHOTO POINT 4
From the multi-use path adjacent to Bridges PAD looking east
PROPOSED CONDITIONS

NEW 100’ DROP STRUCTURE

NEW 60’ STATIC MAST (TYP)

NEW 100’ TRANSMISSION LINE POLE (SEE NOTES)

NEW 10’ SCREEN WALL

PHOTO POINT 4
From the multi-use path adjacent to Bridges PAD looking east
• Transmission line siting study started September 2017 with collection of data and internal spatial analysis.

• Approx. 4 mile long 138-kV transmission line between the relocated Irvington 138-kV Substation and the new Kino 138-kV Substation.

• TEP’s Design Philosophy
 • Work within or next to existing infrastructure and corridors where practical.
 • Work with landowners and stakeholders to avoid or minimize impacts to sensitive areas.
Arizona Corporation Commission (ACC)
Line Siting Process

• The ACC sites and certifies electric transmission lines greater than 115-kV.
• Line Siting Committee reviews application and makes recommendation to the ACC.
• Project requires a Certificate of Environmental Compatibility.
• ACC Responsible for reviewing:
 • Total environment (fish, wildlife, plants)
 • Existing state, local government, and private development plans
 • Noise
 • Recreational impacts
 • Scenic areas, historic sites & structures, archaeological sites
 • Interference with communication facilities
 • Technical aspects
 • Costs
 • Other applicable federal and state laws
TEP’s Line Siting Process

- Identify the need for the Project.
- Identify the Preliminary Study Area.
- Prepare Public Notification Plan/Identify stakeholders.
- Collect baseline data/conduct internal macro-level analysis.
- Conduct first public/stakeholder outreach.
- Identify & analyze opportunities and constraints.
- Develop links and conduct micro-level analysis.
- Conduct second public/stakeholder outreach.
- Connect viable links into alternative routes.
- Conduct impact assessment/engineering & constructability assessment/route comparison.
- Identify alternative routes to carry forward in ACC application for a CEC.
- Prepare and file ACC application.
Comments to Date

- Comments were received in various methods: phone calls, voicemail messages, in-person and online.
- Comments received to date: 39
- Comment topics included:
 - Location
 - Health/EMF
 - Appearance/Design
 - Cost
 - Other/Not identified
- The complete comment spreadsheet can be viewed at tep.com/projects
Electric & Magnetic Fields (EMF)

“What are EMFs?”

- Invisible electric and magnetic forces that surround all electrical devices

- Electric Fields
 - Produced by voltage
 - Increase as voltage increases
 - Decrease with distance from source
 - Weakened by walls, roofs, and vegetation

- Magnetic Fields
 - Produced as current flows
 - Increase as current increases
 - Decrease with distance
 - Obstacles do not weaken
Electric & Magnetic Fields (EMF)

“What are EMFs?”

• EMFs are categorized as either non-ionizing or ionizing.

• Transmission lines fall in to the non-ionizing or low-level radiation category.
Electric & Magnetic Fields (EMF)

“How are EMFs measured?”

- Millagauss (mG) a measure of magnetic flux density or magnetic induction.
- Everyone is constantly exposed to about 500 mG from the Earth’s magnetic field and 100-200 volts per meter (V/m) from the Earth’s magnetic field.

<table>
<thead>
<tr>
<th>Source</th>
<th>Magnetic Field (mG)</th>
<th>Electric Field (kV/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Steady State EMF Values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic Resonance Imaging (MRI)</td>
<td>20,000,000</td>
<td></td>
</tr>
<tr>
<td>Permanent "Refrigerator" Magnets</td>
<td>250,000</td>
<td></td>
</tr>
<tr>
<td>Earth’s Magnetic Field (Northern US)</td>
<td>570</td>
<td>0.2 - 12</td>
</tr>
<tr>
<td>Typical 60 Hz AC EMF Values Encountered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission Lines (typ. @ ROW edge)</td>
<td>0.5 - 50</td>
<td>0.1 - 2.0</td>
</tr>
<tr>
<td>Common Home Appliance @ 3'</td>
<td>0.1 - 10</td>
<td></td>
</tr>
<tr>
<td>Common Home Appliance @ 1'</td>
<td>40 - 300</td>
<td></td>
</tr>
<tr>
<td>Personal Care Appliance @ 0.5'</td>
<td>600 - 700</td>
<td></td>
</tr>
</tbody>
</table>

* Raw measurement with no obstacles in place.
Electric & Magnetic Fields (EMF)

“How much EMF will this transmission line produce?”

<table>
<thead>
<tr>
<th>Transmission</th>
<th>0ft</th>
<th>33ft</th>
<th>66ft</th>
<th>98ft</th>
<th>131ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 kV Line</td>
<td>81 mG</td>
<td>72 mG</td>
<td>51 mG</td>
<td>33 mG</td>
<td>21 mG</td>
</tr>
<tr>
<td>230 kV Line</td>
<td>38 mG</td>
<td>28 mG</td>
<td>15 mG</td>
<td>8 mG</td>
<td>5 mG</td>
</tr>
<tr>
<td>138 kV Line</td>
<td>33 mG</td>
<td>22 mG</td>
<td>11 mG</td>
<td>5 mG</td>
<td>3 mG</td>
</tr>
<tr>
<td>69 kV Line</td>
<td>18 mG</td>
<td>6 mG</td>
<td>3 mG</td>
<td>1 mG</td>
<td>0 mG</td>
</tr>
<tr>
<td>25 kV Line</td>
<td>10 mG</td>
<td>5 mG</td>
<td>2 mG</td>
<td>1 mG</td>
<td>0 mG</td>
</tr>
</tbody>
</table>

* Raw measurement with no obstacles in place.*
Electric & Magnetic Fields (EMF)

“Do non-ionizing EMFs cause cancer?”

• No mechanism by which EMFs or radiofrequency radiation could cause cancer have been identified.
• Animal studies have not provided any indication that EMFs are associated with cancer.
• No consistent evidence for an association between any source of non-ionizing EMF and cancer has been found, despite numerous epidemiologic studies and comprehensive reviews of scientific literature.

(Source: National Cancer Institute)
What’s Next

• Public Meeting #2 – January 24, 2018.
• Select Alternatives.
• Prepare and File ACC CEC Application Spring 2018.
• Design line, conduct EMF readings, permit line.
• Start Construction May 2020, possibly sooner.
• Current in-service date is May 2021.
Basic Units in Electricity

The three most basic units in electricity are voltage (V), current (I), and resistance (r). Voltage is measured in volts, current is measured in amps, and resistance is measured in ohms. A volt is the unit of electric potential difference, or the size of the force that sends the electrons through a circuit. Current is a count of the number of electrons flowing through a circuit. A kV is 1,000 volts. Resistance is a measure of the difficulty to pass the current through the conductor.

Megavolt amperes (MVA)

Apparent power. Active power (watts) is what the user of electrical equipment measures in, however transformers are not rated in active power because it has to take both the resistive load and the reactive load into consideration. This number is required to design an electric distribution system.

kVA

Commonly used as a unit of power in obtaining the electrical capacity
Definitions

Connected kVA
Derived by adding all connected kVA associated with each transformer and using a common demand factor of .43 to simulate an overall peak loading.

Projected kVA
Derived by identifying what each vacant land parcel is zoned and the total acreage in each TRSQ, then applying a project kilowatt (kW) per square foot calculations based on the parcels zoning. kW is converted to kVA using an assumed Power Factor.

Area Load Forecast
Compiling the connected kVA and projected kVA from various zoning set forth by the jurisdiction.

Load Center
Calculated using the projected loads and coordinates of each TRSQ assuming each TRSQ’s load is in the center an arbitrary point is assigned as the origin, then each TRSQ is given coordinates with relation to origin. Load Center is then calculated as such:

\[
\text{Load X Coordinate} = \frac{\sum (\text{TRSQ Load} \times (X \text{ Coordinate} - .5))}{\text{Total Load}}
\]

\[
\text{Load Y Coordinate} = \frac{\sum (\text{TRSQ Load} \times (Y \text{ Coordinate} - .5))}{\text{Total Load}}
\]
January 10, 2018

Ms. Renee Darling
Senior Environmental and Land Use Planner
Tucson Electric Power
88 East Broadway Boulevard
Tucson, Arizona 85702

Dear Renee

Concurrent with continued growth and development of Tucson’s South Park Community, changes in services, resource requirements, and demographics are inevitable. It is most reassuring that Tucson Electric Power has continued to monitor and respond to these changes.

Even more so, Tucson Electric Power should be ever so pleased with employees such as yourself who take the time to provide information, answer questions, and explain the Tucson Electric Power position within these continuing developments.

Thank you so much for taking the time to share the Tucson Electric Power plans for continuing power and energy resources delivery to the Tucson community and specifically, the South Park Community. Such discussions are essential for community understanding and acceptance.

Again, thank you ever so much for sharing, with the South Park Neighborhood Association, your knowledge and experience. With our gratitude, we send along best wishes for your continuing success.

Sincerely,

[Signatures]

Sara O’Neil, SPNA 1st Co-chair

Shirley Hockett, SPNA Treasurer

Jim Sardella, SPNA, 1st Director

Tom Pyle, SPNA 2nd Co-chair

Earl O’Neil, SPNA Secretary

Jeannette Seitz, SPNA 2nd Director